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1 Introduction

Many Department of the Army (DA) and other Department of Defense
(DoD) installations contain soil, sediment, surface water, and groundwater
environments contaminated with explosives. Subsurface and surface con-
tamination by the explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-
trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrazocine (HMX) is often associated with munitions manufacturing and
with loading, assembling, and packing facilities (Pugh 1982, Spaulding
and Fulton 1988). Exposure assessment and risk management of explo-
sives contaminated soil, sediment, surface water, and groundwater require
knowledge of the fate and effects of explosives and their transformation
products in the environment. By far the most extensive body of work on
explosives centers on sorption of TNT and RDX by soils, clay minerals,
and drilling muds (Leggett 1985; Loehr 1989; Pennington and Patrick
1990; Brannon et al. 1992; Ainsworth et al. 1993; Haderlein, Weissmabhr,
and Schwarzenbach 1996). Research on explosives fate and transport
processes in surface waters has concentrated on photodegradation of TNT
(McGrath 1995), although only the disappearance of TNT was generally
monitered due to the unavailability of standards for degradation products.
Other environments have been subject to less extensive study.

Interpretation of sorption data for explosives, especially TNT, is con-
founded by formation of TNT transformation products such as 4-amino-
2,6-dinitrotoluene (4A-DNT), 2-amino-4,6-dinitrotoluene (2A-DNT),
2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene
(2,6-DANT) (Kaplan and Kaplan 1982). When transformation of the sor-
bing analyte is neglected, sorption can be overestimated or misinterpreted.
This can lead to erroneous conclusions on fate and transport of explosives
in the environment.

Processes affecting groundwater transport of TNT include, but are not
limited to, advection, hydrodynamic dispersion, biodegradation, abiotic
transformations, sorption, and diffusion (McGrath 1995). Not all proc-
esses affect TNT subsurface transport equally; therefore, identifying key
processes involved and developing accurate descriptors for these proc-
esses are critical. In environmental settings other than the subsurface,
processes in addition to those identified for the subsurface may be opera-
tive. For example, in environmental settings such as surface water and
soils exposed to sunlight and air, processes such as volatilization and
photolysis may become operative.

Chapter 1 Introduction
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Two of the most important processes affecting the fate and transport of
explosives are sorption and transformation. TNT solution concentrations
either approach steady state in 60 min (Haderlein, Weissmahr, and Schwar-

zenbach 1956), 24 hr (Pennington and Patrick 1990), or 96 hr (Ainsworth

et al. 1993) in soils or rapidly disappear from solution (Price, Brannon,

and Hayes 1995). The lon cqullihratien times for TNT olution oncen-
i nati

and Patrick 1990; Ainsworth et al. 1993; Penmngton et al. 1995b). The
rapid disappearance of TNT from solution is due to TNT transformation
and irrevcrsible sorption to soil organic matter (Price Brannon and Hayes
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results for exploswes in the envnronment and identifies research needs
relevant to exposure assessment. A review of the early literature was pro-
vided by McGrath (1995). Studies conducted during and after preparation
of the McGrath (1995) report are the main focus of this report.
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2 Transformation Processes
Affecting Fate and
Transport

th e A vrie e ad o DL

(1995) and Townsend and Myers (1996) provide a synopsrs of what is known
of photolysis rates and transformation products. Because photolysis-
mediated transformations occur rapidly (McGrath 1995; Townsend and

_____ 100N Ao o

1v1yers 1990}, CXplOSlVCS should not peI'SlS[ in surface waters. This section

ot Asatad Lo, L

1 ot that Ataluaic
will focus on transformations that are not mediated by photolysis.

The major factors affecting fate and transport of TA.T in the s a
are transformatlon sorption, and 1rrevers1ble soil binding (Townsend and
Myers 1996). Although TNT reductive transformatron has been known
for some time (McCormick, Feeherry, and Levinson 1976; Kaplan and
Kaplan 1982), only recently have TNT reductive transformation products
been routinely measured in laboratory and held studres (Townsend Myers
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TNT transformation generally occurs by sequential reduction of nitro
groups to amino groups (Figure 1). Commonly observed reductive trans-
formation products include 2A-DNT, 4A-DNT, 2,4-DANT, and 2,6-DANT.

4,6- trlammotoluene (lAl) 1s also possxble The presence of these com-
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DANT to TAT in cell suspensxons has been reponed (Preuss and Rxeger
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Figure 1. Proposed TNT transformation pathway (from Kapian and Kapian 1982)
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TNT transformation rates are enhanced significantly under anaerobic
conditions (Price, Brannon, and Hayes 1995) (Figure 2). Depending on
the Eh, one or two of the nitro groups were reduced to amino groups.

=nn .\

TNT was unstable at all of the Eh values tested (+500, +250, 0, -150 mV),
hytt tyrac acemaniallesy ssnnctalila ~¢ DL 18N 7
vut <a Cbl}cbldlly ulntavic al Ll = -109vu iy,

Normalized TNT breakthrough curves for different soil types illustrate
dramatic differences (Myers and Townsend 1996) (Figure 3_). The Tunica
silt is a loam (4 percent sand, 82 percent silt, 14 percent clay) from
Vicksburg, MS, and the Louisiana Army Ammunition Plant aquifer mate-
rial (LAAP-D ) (22 percent sand, 36 percent silt, 42 percent clay) is from
onreveport LA. rracucauy all of the TNT mass introduced to the LAAP D
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tion in the LAAP-D aqurfer material was neghglble (Figure 5). The trans-
formation data for Tunica silt and LAAP-D aquifer material (Figures 3-5)
indicate that caution should be used when interpreting soil column or

batch data solely on the basis of TNT, 2A-DNT, and 4A-DNT analyses.

n
measured transformatron products such as T, T, (b) fo rmatmn of azox
toluene conjugates or polymers, (c) irreversible binding to soils, and
(d) mineralization to CO, and H,O (Myers and Townsend 1996). Irre-
versibie soil bmdmg has been suggested as a mechanism accounting for
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ais ppearance in soii coiumn studies (d>elim, AXue, and Iskandar
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and Haves 1995) obic conditi
versible binding to orgamc matter may therefore be an important mecha-

nism since TNT and most of its transformation products are not extracted
by the solvents used in the standard explosives analyses (SW 8330) (Pen-
nington et al. 1995a; Price, Brannon, and Hayes 1995).

When sterilized and unsterilized soils were use SV
served under both conditions (Pennington and Patrrck 1990 ers
in preparation), suggesting the presence of a purely abiotic transformation
component. Transformations were far more extensive in unsterilized soils
than in sterilized soils. Townsend, Myers, and Adrain (1995) pumped

o~ o Tew

over 150 pore volumes of TNT-contaminated feed solution through Tunica

o PO [, Praga— e AT o __ _C_ ____ _a% ____ Y e A&
silt in columns and found that TNT transformations were stiil occurring at
the end of the loading step. These data suggest a nonexhaustible process
which is consistent with biological transfor ice, Brannon, and

O
Hayes (1995) demonstrated that Fe*? in the presen 0
or kaolinite surface resulted in drsappearanc of TNT. No d1sappearance
of TNT was observed i m systems containing montmorillonite, kaolinite, or
Fe*“ alone. Since Fe™“ alone could not transform TNT, microorganisms
and/or surtaces are also needed Once the mltxal supply of Fe"‘ is ex-

cadiinting of Bat3 ¢a Bat2 oo Ao oo b | 7 gees .

rcdu\,truu of Fe"" to F unaer uagluuu. conditions. This, in effect, cou-
- - + . -

ples a microbial pathway to the Fe™“ abiotic pathway.
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Agqueous mass of TNT and transformation products following one day of incubation (from Price, Brannon, and Hayes 1995)

Figure 2.
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Figure 3. TNT breakthrough curves for Tunica siit soil and Louisiana

Army Ammunition Plant aquifer material (LAAP-D) (v = average
pore water velocity, L = column length, D = column
Pp = bulk density) (from Myers and Townsend 1996)
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Subsequent work has shown that the products of the abiotic Fe*? reduc-
tion are pH dependent and consist mainly of 2A-DNT, 4A-DNT, and
azoxy compounds (Price, Brannon, and Hayes in preparation). The exist-
ence of the Fet* reaucuon patnway for TNT has been demonstrated in

onila eina Do e mxrAG te mrmsasadl~as) A Q3222 O L Vel
soils (Price, Brannon, auuznaycs in preparation). Addition of a chelating
+ .
agent (EDTA) to bind Fe™“ resulted in a nearly 50 percent decrease in
t

Pseudo-first-order disappearance rate constants for TNT (Townsend
and Myers 1996) measured in column tests and for TNT and its transfor-
mation products measured in batch tests with the same clay soil (Brannon
et al. in preparation) (Table 1) agree within an order of magnitude. Disap-

mmanmnsmn wnta mmrendnembo xrem A e mmamm~alal e A2al e e o TT . L1
pearaice rai€ COMSiants unacr anacrooiC cona tions ar€ generaily nigner
than those under aerobic conditions, resulting in a shorter half-life under
anaerobic conditions (Table 1).

TNT transformations in water exposed to plants and sediments produce
products similar to those produced with soils, specifically mono- and
di-amino reduction products (Best and Sprecher 1996). Removal of nitro
groups was not Iouna for any of the 10 plant specxes tested. The only

RDX and HMX
Less is known regarding the transformation ef RDX and HMX than that
of TNT. Research has indicated that RDX is also affected by transfo

tion (McCormick, Cornell, and Kaplan 1981 Mycrs ef al. in arz;tlon).
In a proposed pathway scheme for the biodegradation of RDX, McCor-
mjck Cornell and Kaplan (1981) showed reduction of nitro groups until
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der both anaerobic and aerobic conditions but is pprox1mate1y an order of
magnitude higher under anaerobic conditions. Mass balances for column
experiments (Myers et al. in preparation) indicated disappearance of RDX.
Although column eluates were not analyzed for RDX transformation prod-
ucts, analysis of soiis showca that RDX was not retained in the columns.
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Myers 1996).
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Table 1
First Order Rate Coefficients for Disappearance of TNT and TNT
Transformation Products from Aerobic and Anaerobic Soil

—_—a B o o _ &Y _ __

(Brannon et al. in preparation)

Compound K, hr' Std. Error ? t'2, hes
Aerobic Conditions
TNT, abiotic 0.0053! 0.0007 0.784 131
TNT, biotic 0.01632 0.002 0.939 43
2A-DNT 0.0067 0.0013 0.696 103
4A-DNT 0.0113 0.0023 0.686 61
2,4-DANT 0.0208 0.002 0.908 33
2,6-DANT 0.0167 0.0008 0.974 4i
Anaerobic Conditions

TNT, abiotic 0.00583 0.0005 0.936 118
TNT, biotic 0.062! 0.01 0.95 11
2A-DNT 0.048 0.004 0.944 14
4A-DNT 0.047 0.007 0.861 15
2,4-DANT 0.013 0.0024 0.772 85
2,6-DANT 0.034 0.0018 0.975 21
j Regression uses data from 2 hours and up.

S Rogrossion oo data flom & hours and .
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3 Sorption Processes
i nd
Affecting Fate and

Sorption is a process that can and does occur in any environment, al-
though the relative 51gn1t1cance of sorption in relation to other processes
may vary. Whether the sorpuon is revers1b1e or irreversible w111 aepena

TNT can be sorbed in a reversible manner (Haderlein, Weissmahr, and
Schwarzenbach 1996, Pennington and Patrick 1990) and can also undergo
reactions, which can be mistaken for sorption, that remove TNT from
solution and bind TNT transformation products to soil in an unextractable
manner (Pennington et al 1995a' Brannon et al. 1992; Prlce Brannon and
re

.............

l QaNn- A Inc“rnrfh 1001

al. 1995; Ha_d_grleln Wmssm___ , and Schwarzenbac
batch- determmed equilibrium sorntlon coeff1c1ents whose 1sother plots
were well behaved in all respects and appeared reliable. However, recent
experiments (Price, Brannon, and Hayes 1995; Myers et al. in preparation)
also showed that TNT in batch tests for some soils may not reach nonzero
steady-state concentrations in either soil or dissolved phases due to trans-
formation reactions.

Two radically different perspective

TS TEEETEEET DT ’O s == ~

"" "“ r

soil and water phases emerges. One portion of hterature on batch
TNT sorption highlights measurement of constants for equilibrium parti-
tioning of TNT between soil and water phases. The other portion empha-
sizes TNT transformation and the absence of equilibrium concentrations
m soxl and water phases. bome have trled to eummate the ettect of trans-

—a
w
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include confusion over sorbed TNT concentrations (unmeasured transfor-
mation products), poorly-defined redox conditions during batch testing,
and soils with different properties and microbial activities.

Came ¢tnndiec have meacnrad hath dicenlvaed and cnil r\"\ ace TNT concan
SULIIC Stulils 1a vl iliCadsuiCu UUul UldSULVEU ainll SULL piiast 11N LUdiLlir-
trations (Ainswort.. et al 1993; Price Brannon, and Hayes 100* ; Myers et

concentratlons (Leggett 1985; Pennington and Patrick 1990; Xue, Iskandar,
and Selim 1995). In the absence of measured soil phase TNT concentra-
tions, sorbed concentrations are calculated by difference, that is, the TNT
that dlsappears from the water phase is assumed to have been sorbed by
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the soil pnase. Thus, caicuiate d sorbed concentrations refiect both TNT
U T
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disappearance from solution by sorption and transformation (unmeasured).
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in preparation; Price, Brannon, and Hayes 1995) showed that equ ilihrmm

in the sorbed phase for some soils is not
to transform, especially under anaerobic condmons.

Eh is a major environmental factor affecting N ansformatlon but
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al concentration of oxygen in the water and soil, org
manganese, sulfur, and numerous other redox-sensitive substances. TNT
transformation is more rapid when nitrogen is the head space gas and
deaired water is used than when air is the head space gas and air-equili-
brated water is used (Myers et al. in preparation). Since T‘NT is unstabie
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stants were measured for TNT and 1ts ‘transformation | products with ho-
moionic K*- or NH,*-clays (up to 21,500 L/kg) compared to much lower
sorption (up to 1.7 L/kg) when Ca*2, Na* , Mg*2, or AI*> was the ex-
changeable cation. These resulits suggest that the sorptlon behavior in
freshwater ana saline waters may be very different. In freshwater environ-
men
ucts o

observed in a saline envir t where is present in higher co
tions than Ca , but Na* is even more common and preferentlallv ex-
changes to dlsplace K*. In considering the fate and transport of TNT and
its transformation products, not only is the type of soil or sediment impor-
tant, but also the ionic strength and composition of the groundwater or sur-
face water in which the soil or sediment resides.
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Haderlein, Weissmahr, and Schwarzenbach (1996) showed that TNT
and its degradation products may exhibit very different mobilities in sub-
surface environments where specific adsorption to clay minerals can be a
dominant sorption process. Distribution coefficient values for aqueous
TNT and its transformation products on a K* saturated montmorillonite de-
creased in the order TNT > 2A-DNT > 4A-DNT > 2,6-DANT > 2,4-DANT
(Haderlein, Weissmahr, and Schwarzenbach 1996). Testing with a
Sharkey clay soil has shown much lower distribution coefficients and a
more uniform distribution (within a factor of two) for TNT and its transfor-
mation products (Brannon et al. in preparation). Therefore, depending
upon the characteristics of the sorbent, TNT transformation products may
either be more mobile than TNT or show similar mobility.

Competitive adsorption between TNT, its degradation products, and
other explosives has been postulated as a process that can effect their sorp-
tion and transport (Loehr 1989; Ainsworth et al. 1993). For clay minerals,
the competition efficiency of explosives and their degradation products
parallels their relative distribution coefficient values (Haderlein, Weiss-
mabhr, and Schwarzenbach 1996). Competition between adsorbed explo-
sives is negligible only in very dilute systems (Haderlein, Weissmahr, and
Schwarzenbach 1996). After the linear range for adsorption is exceeded
on clays, explosives with a higher distribution coefficient will displace
compounds with a lower distribution coefficient. For example, 2A-DNT
will displace 2,4-DANT from clay sorption sites into the water phase
(Haderlein, Weissmahr, and Schwarzenbach 1996).

Soil column studies have shown that a sorption term, in addition to an
irreversible disappearance term, is needed to obtain good model fits for
TNT breakthrough (Ainsworth et al. 1993; Selim, Xue, and Iskandar 1995;
Townsend, Myers, and Adrian 1995; Comfort et al. 1995; Myers et al. in
preparation). Equilibrium-controlled sorption (linear and nonlinear) has
been the preferred model formulation for TNT sorption in column studies
(Ainsworth et al. 1993; Selim, Xue, and Iskandar 1995; Townsend, Myers,
and Adrian 1995; Myers et al. in preparation) and has worked well for a
wide range of average pore water velocities.

Modeling of TNT fate and transport in environments other than the sub-
surface may require additional formulations. For example, fate and trans-
port in surface waters may well require additional terms to adequately
describe the behavior of TNT because of additional sink terms such as
photodegradation or the activities of plants. Sediments containing plants
removed TNT from water more rapidly than did sediment alone (Best and
Sprecher 1996).

Surface soils highly contaminated with TNT are another area where
formulations that adequately describe TNT fate and transport in the
subsurface may require modification. Surface soils are generally large
repositories of explosives at munitions loading facilities because of past
waste disposal practices. Explosives are relatively stable in surface soils
because of the presence of solid product in the soils (Pennington et al.
1995b) and the toxicity of high explosives concentrations to soil organ-
isms (Bradley and Chapelle 1995). Solution phase concentrations of TNT,
RDX, and HMX in soils containing high concentrations of these compo-
nents, including a high proportion as free product, were controlled by the

Chapter 3 Sorption Processes Affecting Fate and Transport
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aqueous solubility of the respective explosives (Pennington et al. 1995b).
Solution phase concentrations in soils with lower concentrations of explo-
sives were controlled by partmomng (Pennington et al. 1995b). Desorp-
tion partitioning resulited in nearly linear dcsorpuon isotherms for three

TNT degradation products, 4A-DNT, 2A-DNT, and trinitro benzene
(TNB) (Pennington et al. 1995b).

Sorption of RDX can be described well using linear equilibrium sorp-
tion isotherms (Leggett 1985; Ainsworth et al. 1993; Selim and Is and_r

1994; Haderlein, Weissmahr, and Schwarzenbach 1996, Mvers eta
preparation). Substantially less data are available on the sorption of
HMX; but, in column studies (Myers et al. in preparation), HMX sorption
was approximately described using a linear equilibrium model, although
some evidence of nonequmbnum or nommeanty was observed. In gen-

DMV 7YY 1 1.2 ) PPN = A QL _1__ 1L 10N T (1

TNT, only small amounts of RDX become associated w1th soil organic
matter (Price, Brannon, and Hayes in preparation). Desorption of radiola-
beled TNT and RDX over time was complex but was also consistent with

field observations on the reiative mobility of TNT and RDX, i.e., RDX is
more mobile than TNT (Brannon et al. 1992). Even though the soils were
sterilized by gamma irradiation, abiotic production of transformation prod-
ucts that were not assa ygd may have influenced results. However, at the

end of 180 days, radioactivity could not be detected in either water or
methanol extracts of soils to which 14C labeled TNT had been added. Ra-
dioactivity from added 14¢ 1abeled RDX remained extractable from soils
followmg 180 days of incubation. Behavior of RDX in settings other than
the suosunace may be affected by many of tnc same factors as are those in

from water was .uuch less auectcd by the presence of plants than was
TNT. However, low Xygen concentrations in the watgr resulte d in in

solved oxygen concentrations. Thls is consistent with observed increases
in mineralization due to anaerobic conditions in soils (Price, Brannon, and
Hayes in preparation).

Chapter 3 Sorption Processes Affecting Fate and Transport
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descrlbmg one- dxmcnsmnal solute transoort Figure 7 adapted and ex-
panded from Townsend and Myers ( 1996) generahzes the processes in-
volved in the fate and transport of explosives in the subsurface, surface,
aquatic, and wetland environments. All sources and sinks in Figure 7 may
not be operative in ali environmental settmgs For example durmg subsur-

face transport of explosives, photolysis would be inactive and volatilization
should be minimal. However, these processes should be considered during
fate and transport evaluations that involve exposure to sunlight and the
Air Phase
4
Volatilization Deposition
- v
~ e Dissolution | . _ ANSORPTION
Crystailine EEEEE—— Aqueous Phase; [y Media Solids:
Solids | Solutes _ Adsorbates
~ Precipitation -
DESORPTION
PHOTOLYSIS TRANSFORMATION TRANSEGRMATIGN
ARANOTUNVIALIUN
A 4 A 4 4
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Explosives Explosive
Ths “DESORPTION Ths

Figure 7. Phases for TNT, RDX, and HMX (after Townsend and Myers 1996)
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atmosphere. Available rate constants for representative explosives for pho-
tolysis and volatization are summarized by McGrath (1995) and refer-
ences therein Volatilization of TNT from surface soils should be

Mathematical process descriptors for transport of explosives are more
fully developed for the subsurface than f ofhe-r environmental settings
(McGrat 19 5; Townsend and Myers 1996: wnsend, Myers, and

Adrian 1995; Sehm Xue, and Iskandar 1995). Townsend and Myers
(1996) update presently known coefficients and rate constants for sorp-
tion, biodegradation volatilization, photolysis, etc. for TNT, RDX, and

HMX presented in McGrath (1995) Additional sorption coefficients are

available for c1ay minerals with various saturaung cations (haderleln
< Lo~

a1 o o PP PRIS.S PHNYS o PR
Weissmah ar sur soils (Brannon et al. in
preparation). Descriptors for processes other than photolysis are generally
lacking for aquatic and wetland environments, and do not include produc-

tion of transformation products. However, sorption and transformation
process descriptors for soils may be modified to encompass other environ-
mental settings if the effects of differing environmental conditions, such
as Eh, are considered.

rvtimar asnAd tenna ntine o s ~AF tha et mmmmancan '~ SRS S T
Sorption and transformation are two of the major processes affect ng the
fate and transport of explosives in the subsurface (Townsend and Myers

et
=

1996) and will be equally important in other environmental settings. Dis-
appearance of exploswes from water exposed to sediments and plants
(Best and Sprecher 1996) demonstrate the importance of these processes
in aquatic and wetland environments. TNT is more reactive than RDX in
the subsurface and less subject to sorption (Spaulding and Fulton 1988).
This also appears to be the case in aquatic ana weuana env1ronments
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sistent than TNT in the subsurface. Deseri-l_
more successful than efforts to describe TNT when i dependentlv deter-
mined (batch) parameters were used (Sehm, Xue, and Iskandar 1995),
probably due to negligible transformation and irreversible sorption. TNT
was strongiy retained by soils during column tests, although unanalyzed
diamino transformation products may have contributed to this finding

A

citira oni]l maccriranants srama At A PPN S -4 PREpRpY P .Y e LD
since soil measuremeiits were not conducted, while only limited retention
of RDX was observed (Selim, Xue, and Iskandar 1995). Agreement be-

tween observed and model breakthrough curves for thin-disk soil columns

suggests that simple formulations of sorption and reaction in transport
models for TNT can capture the main effects of these processes, even at
high solution concentrations (Townsend, Myers, and Adrian 1995). Others
(Comfort et al. 1995) showed that TNT sorptron and degradatlon are con-
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dox potential within columns cannot be controlled and was not measured,
the degree of reduction, which strongly affects TNT transformation rate,
cannot be gauged. This points to the complexity of explosives fate and
transport, even in the subsurface where the most information exists.
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Extension of the knowledge gained from subsurface transformation and
sorption of explosives will, however, provide a starting point for other en-
vironments. Quantification of the most important processes operative in
aquatic and wetland environments, including sorption and transformation,
is needed. This will allow development of process descriptors for surface
soils and aquatic and wetland environments.
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Most of the information available on fate and transport of explosive
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RDX and other explosives, additional processes such as mmcrahzatlon to
CO, may also be important, while processes such as sorption may be less
important.
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the nature of the information available and will requlre additional proccss
level research.
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Fate, sorption, and transformation studies should be conducted with
TNT in surface waters and surface soils in addition to subsurface
soil environments to determine the importance of these processes
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Fate, sorption, and transformation studies should be conducted with
RDX and HMX in various environments.

Chapter 6 Recommendations
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