Headquarters U.S. Air Force

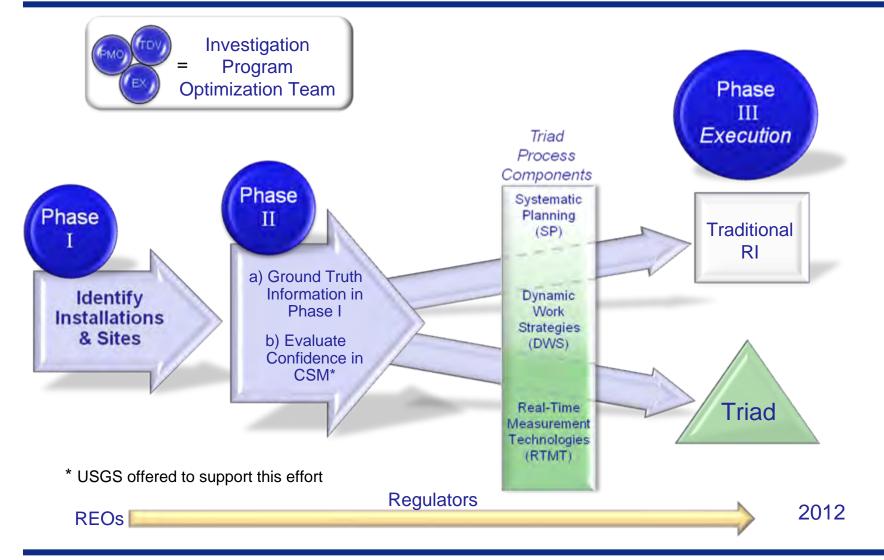
Integrity - Service - Excellence Tinkering with Innovation Air Force Strategy for using Multi-Incremental Sampling (MIS)

Mr. Edward J. Brown USAF AFCEE/TDV 18 February 2009 Version 5

U.S. AIR FORCE

- Introduce a better sampling technique based on good science
 - > Adopt modern characterization & modeling strategies
 - > Triad approach (rapid site characterization)
 - Cost savings generated by strategic planning and better understanding of site conditions through development of more representative Conceptual Site Models (CSM)
- Introduce multi-increment sampling (MIS) at USAF sites other than exploded ordinance sites
- Better preparation and understanding of CSM
- Data collection design and analysis that supports DQOs and RAOs

USAF Thoughts & Philosophy


- Potential uses of MIS at USAF sites
 - Incorporation of MIS (and Triad) at sites other than MMRP sites
 - pesticide sites
 - tank farms
 - > asbestos in soil
 - metals in soil
- Preliminary screening tool; prioritize cleanups
- Larger pool of representative site data at a lower cost
- > US Army Ranges and USAF Ranges are different
- > Opportunities for program optimization
- Potential for significant reduction in analytical costs

History of Past Multi-Increment Sampling Successes

- Case studies from the Army Corps of Engineers demonstrate MIS effectiveness
- > Explosive residues, PCBs, surface soils, sediments
- State Governments and Mining Industry
 - Ranges
 - > Mining industry for vertical assessment
 - POL in Alaska and Hawaii
 - Pesticides in Hawaii

Investigation Program U.S. AIR FORCE **Optimization (IPO) – Process**

Integrity - Service - Excellence

Goal of Triad Initiative

- > Triad is a tool for expedited site characterization
- Lead environmental community
 - > Adopt 2nd-generation practices
 - Difficult transitions but worthwhile benefits
- "Upgrading practices"
- > Improve CSM
 - > Accuracy
 - Cleanup efficiency
 - Achieve cleanup program goals
 - Cost effectiveness

- Based upon particulate theory (Gy 1992, Pitard 1993)
- Incorporates relationships between
 - Soil variability
 - Particle sizes
 - Distribution of contaminants
 - Sample size
- Reduces heterogeneity within sample and decision unit
- > Multiple individual increments from a decision unit are pooled
 - Generates estimate of mean concentrations
 - Reproducible results
 - May include laboratory sub-sampling

MI Sampling Approach Theory

- Sample Plan
- Sample Site and Location
- Decision Units
- > Locations Tank Farms, Military Housing, Spill Sites
- Sampling Procedures
 - > VOCs, SVOCs, Asbestos, Pesticides, and Metals
- Subsampling

Decision Unit Identification

- > A decision unit: specific area to be represented by each MIS sample
- > Use existing data to delineate decision unit if unknown source
 - > For example, historic photos, site information, interviews
- MIS is <u>not</u> used to "dilute" contamination or eliminate the need for cleanup
- "Dilution" occurs if decision unit includes large, uncontaminated areas

Systematic Planning

- Systematic Planning & Data Collection Design
 - Defines problem requiring solution
 - Identifies acceptable solutions and goals
 - Defines decisions needed to meet goals
 - Identifies decision units
 - Identifies sample support requirements
 - Identifies sources of decision uncertainty
 - Provides strategies for uncertainty management
 - Ensures cleanup standards are clearly defined
 - Ensures data collection supports CSM definition
 - Ensures all actions are congruent with the established RAOs and DQOs

- CSM is a tool used to represent hydrogeology, contaminant distribution, fate and transport of contaminants and potential receptors
 - Exposure scenarios
 - Strategies to reduce risk
- > A representative CSM of sufficient accuracy is key to successful projects
- CSM is not just fate/transport or exposure scenario models
- Provides basis for decisions related to risk, remediation, reuse
- Inaccurate or incomplete CSMs
 - Potentially may put receptors at risk and create conflict
 - Include untested assumptions
 - Lead to faulty project designs

Integrity - Service - Excellence

AFCEE MI Sampling Methodology

- Define the decision unit(s) both horizontally and vertically
- Identify random sample locations & depths in each decision unit
- Submit the work plan for peer and QA review
- Collect 30-50 increments per decision unit
- Collect triplicate samples at independent locations
- Sieve non-volatiles to 2 mm, sub-sample & submit 30-50 g
- Conduct cost effective data package Quality Assurance review
- Calculate and report all relevant quality control parameters
- Submit report for review
 - Source "US Army Corps of Engineers Improving the Quality of Environmental Sampling"

- > Used in mining industry to obtain objective information about a population in specific lithologic units
- > Requires:
 - Good Sampling Plan
 - Good Decision Unit Definition based on lithology
 - > Understanding of chemicals of concern
- Ply method sampling each distinct individual layer is more accurate and preferred
 - Source "Society for Mining, Metallurgy, and Exploration, Inc. (SME) Mining Reference Handbook" SME, 2002

Integrity - Service - Excellence

- > Two methods of vertical sampling:
 - In situ (from cores or outcrop [tank pit, etc.]) or
 - Ex situ sampling after sample is removed from original deposit (e.g., truck, conveyor belt, or stockpile)
- In situ sampling
 - > Preferred for a non-weathered sample of deposit
 - Sample can be recorded as a whole or in plies (individual layers)
 - Source "Society for Mining, Metallurgy, and Exploration, Inc. (SME) Mining Reference Handbook" SME, 2002

Integrity - Service - Excellence

MI Sampling Pesticides & SVOCs

- Ideal for areas with widespread contamination, such as
 - Chlordane and pesticide application areas (i.e., base housing)
 - Large tank farms (reduce uncertainty due to soil heterogeneity)
 - PCB spill areas
 - > Areas with asbestos-containing materials
- > Uses same sampling methodology same as for exploded ordinance sites

- > Sampling for VOCs under MIS methods is problematic:
- Volatiles samples must <u>not</u> be sieved or pulverized
- Homogenization can result in VOC loss
- > The State of Alaska recommends in Draft Guidance:
 - Collect VOC samples prior to non-volatile samples
 - Collect small increments (2-5 g) & place directly into jar containing methanol (minimum 1:1 methanol/soil ratio)
 - Collect at least 50g of sample to decrease total sampling error
 - Individual increments should be small particle size (<2mm) to be similar to nonvolatile sample matrix after sieving

- > MIS process for metals analysis:
 - > 30g field sample is more than needed for analysis
 - Small samples (1g) normally digested & analyzed in lab
 - > Grinding of samples required to decrease particle size & reduce sample bias ... increased digestion required
- Benefits Distinguish between naturally-occurring metals and anthropogenic metals (e.g., lead-based paint)

Sample Processing & Sub-sampling Biases

- > Highly biased values will result if sampling procedures are not appropriately matched to sample matrices
- Biases based upon distributional heterogeneity due to gravitational effects leads to grouping and segregation error
- Laboratory QA process
 - > Addresses procedural, instrumental and analyst issues
 - Ignores sample processing/sub-sampling

Limitations of MI Sampling

- Not appropriate for groundwater and fractured bedrock
- > Large particle sizes increase uncertainties in VOC analysis
- Vertical MIS is constrained by limited number of boreholes
- Laboratory sub-sampling can negate representativeness

Experience Collecting Representative Samples

- Studies at variety of explosives-contaminated sites
 - > Ammunition plants, depots, ranges, industrial sites
 - > TNT, RDX, HMX,2,4-DNT,Ammonium Picrate
- > Discrete samples yield variance in sampling error due to
 - Insufficient mass
 - Insufficient number of samples
 - Incorrect sample locations
- Sample processing & subsampling may produce data that passes the validation process; however, the analytical results would not be representative of site conditions

- Triplicate samples critical to validate MI sample representative of decision unit both horizontally and vertically
 - > One decision unit = one triplicate sample
 - > > 1 decision unit: 1 triplicate per 10 decision units (10%)
 - Vertical samples: 1 triplicate per 10 cores within decision unit
- Allows calculation of Relative Standard Deviation (RSD; indicator of data distribution & precision)
- > Define collection of triplicates in Sampling and Analysis Plan
- Laboratory QA process ignores sample processing/subsampling

- Employs USAF / Triad approach
- Incorporates better science & new technologies
- > Adopts modern characterization & modeling strategies
- Results in potential cost reductions
- Provides better understanding of CSM
- Potential use at areas with widespread contamination
 - Vertical delineation
 - > VOC analysis
 - SVOCs, metals and pesticides